Правила прямоугольного треугольника геометрия

Геометрия – это не только предмет в школе, по которому нужно получить отличную оценку. Это еще и знания, которые часто требуются в жизни. Например, при строительстве дома с высокой крышей необходимо рассчитать толщину бревен и их количество. Это несложно, если знать, как находить высоту в равнобедренном треугольнике. Архитектурные сооружения базируются на знании свойств геометрических фигур. Формы зданий зачастую визуально напоминают их. Египетские пирамиды, пакеты с молоком, художественная вышивка, северные росписи и даже пирожки – это все треугольники, окружающие человека. Как говорил Платон, весь мир базируется на треугольниках.

Чтобы было понятнее, о чем далее пойдет речь, стоит немного вспомнить азы геометрии.

Треугольник является равнобедренным, если он имеет две равных стороны. Их всегда называют боковыми. Сторона, размеры которой отличаются, получила название основания.

Как и любая наука, геометрия имеет свои основные правила и понятия. Их достаточно много. Рассмотрим лишь те, без которых наша тема будет несколько непонятна.

Высота – это прямая линия, проведенная перпендикулярно к противоположной стороне.

Медиана – это отрезок, направленный из любой вершины треугольника исключительно к середине противоположной стороны.

Биссектриса угла – это луч, разделяющий угол пополам.

Биссектриса треугольника – это прямая, вернее, отрезок биссектрисы угла, соединяющий вершину с противоположной стороной.

Очень важно запомнить, что биссектриса угла – это обязательно луч, а биссектриса треугольника – это часть такого луча.

Теорема гласит, что углы, расположенные при основании любого равнобедренного треугольника, всегда равны. Доказать эту теорему очень просто. Рассмотрим изображенный равнобедренный треугольник АВС, у которого АВ=ВС. Из угла АВС необходимо провести биссектрису ВД. Теперь следует рассмотреть два полученных треугольника. По условию АВ=ВС, сторона ВД у треугольников общая, а углы АВД и СВД равны, ведь ВД – биссектриса. Вспомнив первый признак равенства, можно смело заключить, что рассматриваемые треугольники равны. А следовательно, равны все соответствующие углы. И, конечно, стороны, но к этому моменту вернемся позже.

Основная теорема, на которой базируется решение практически всех задач, звучит так: высота в равнобедренном треугольнике является биссектрисой и медианой. Чтобы понять её практический смысл (или суть), следует сделать вспомогательное пособие. Для этого необходимо вырезать из бумаги равнобедренный треугольник. Легче всего это сделать из обычного тетрадного листка в клеточку.

Согните полученный треугольник пополам, совместив боковые стороны. Что получилось? Два равных треугольника. Теперь следует проверить догадки. Разверните полученное оригами. Прочертите линию сгиба. При помощи транспортира проверьте угол между прочерченной линией и основанием треугольника. О чем говорит угол в 90 градусов? О том, что прочерченная линия – перпендикуляр. По определению – высота. Как находить высоту в равнобедренном треугольнике, мы разобрались. Теперь займемся углами при вершине. При помощи того же транспортира проверьте углы, образованные теперь уже высотой. Они равны. Значит, высота одновременно является и биссектрисой. Вооружившись линейкой, измерьте отрезки, на которые разбивает высота основание. Они равны. Следовательно, высота в равнобедренном треугольнике делит основание пополам и является медианой.

Наглядное пособие ярко демонстрирует истинность теоремы. Но геометрия – наука достаточно точная, поэтому требует доказательств.

Во время рассмотрения равенства углов при основании было доказано равенство треугольников. Напомним, ВД – биссектриса, а треугольники АВД и СВД равны. Вывод был таков: соответствующие стороны треугольника и, естественно, углы равны. Значит, АД = СД. Следовательно, ВД – медиана. Осталось доказать, что ВД является высотой. Исходя из равенства рассматриваемых треугольников, получается, что угол АДВ равен углу СДВ. Но эти два угла являются смежными, и, как известно, дают в сумме 180 градусов. Следовательно, чему они равны? Конечно, 90 градусам. Таким образом, ВД – это высота в равнобедренном треугольнике, проведенная к основанию. Что и требовалось доказать.

  • Чтобы успешно решать задачи, следует запомнить основные признаки равнобедренных треугольников. Они как бы обратны теоремам.
  • Если в ходе решения задачи обнаруживается равенство двух углов, значит, вы имеете дело с равнобедренным треугольником.
  • Если удалось доказать, что медиана является одновременно и высотой треугольника, смело заключайте – треугольник равнобедренный.
  • Если биссектриса является и высотой, то, опираясь на основные признаки, треугольник относят к равнобедренным.
  • И, конечно, если медиана выступает и в роли высоты, то такой треугольник — равнобедренный.

Однако для большинства задач требуется найти арифметическую величину высоты. Именно поэтому рассмотрим, как находить высоту в равнобедренном треугольнике.

Вернемся к представленной выше фигуре АВС, у которой а – боковые стороны, в — основание. ВД – высота этого треугольника, она имеет обозначение h.

Что представляет собой треугольник АВД? Так как ВД – высота, то треугольник АВД – прямоугольный, катет которого необходимо найти. Воспользовавшись формулой Пифагора, получаем:

Определив из выражения ВД и подставив принятые ранее обозначения, получим:

Если вынести из под знака корня ¼ , то формула будет иметь вид:

Так находится высота в равнобедренном треугольнике. Формула вытекает из теоремы Пифагора. Даже если забыть эту символическую запись, то, зная метод нахождения, всегда можно её вывести.

Формула, описанная выше, является основной и чаще всего используется при решении большинства геометрических задач. Но она не единственная. Иногда в условии, вместо основания, дано значение угла. При таких данных как находить высоту в равнобедренном треугольнике? Для решения подобных задач целесообразно использовать другую формулу:

Если в задаче дано значение угла при вершине, то высота в равнобедренном треугольнике находится следующим образом:

Очень интересным свойством обладает треугольник, вершина которого равна 90 градусам. Рассмотрим прямоугольный треугольник АВС. Как и в предыдущих случаях, ВД – высота, направленная к основанию.

Углы при основании равны. Вычислить их большого труда не составит:

Таким образом, углы, находящиеся при основании, всегда по 45 градусов. Теперь рассмотрим треугольник АДВ. Он также является прямоугольным. Найдем угол АВД. Путем несложных вычислений получаем 45 градусов. А, следовательно, этот треугольник не только прямоугольный, но и равнобедренный. Стороны АД и ВД являются боковыми сторонами и равны между собой.

Но сторона АД в то же время является половиной стороны АС. Получается, что высота в равнобедренном треугольнике равна половине основания, а если записать в виде формулы, то получим следующее выражение:

Следует не забывать, что данная формула является исключительно частным случаем, и может быть использована только для прямоугольных равнобедренных треугольников.

Очень интересным является золотой треугольник. В этой фигуре отношение боковой стороны к основанию равняется величине, названной числом Фидия. Угол, расположенный при вершине — 36 градусов, при основании – 72 градуса. Этим треугольником восхищались пифагорейцы. Принципы золотого треугольника положены в основу множества бессмертных шедевров. Известная всем пятиконечная звезда построена на пересечении равнобедренных треугольников. Для многих творений Леонардо да Винчи использовал принцип «золотого треугольника». Композиция «Джоконды» основана как раз на фигурах, которые создают собой правильный звездчатый пятиугольник.

Картина «Кубизм», одно из творений Пабло Пикассо, завораживает взгляд положенными в основу равнобедренными треугольниками.

fb.ru

Из условия известно, что один из внешних углов треугольника равен 136°, а один из углов треугольника не смежный с ним 61°.

Для того, чтобы найти второй угол треугольника не смежный с внешним вспомним следующее свойство внешнего угла.

Итак, внешний угол треугольника равен сумме двух не смежных с ним углов треугольника.

Обозначим с помощью переменной x неизвестный не смежный с внешним углом угол треугольника.

Ответ: 75° второй угол треугольника не смежный с внешним равным 136°.

vashurok.ru

Синус, косинус и тангенс острого угла прямоугольного треугольника.

Сейчас рассмотрим что же такое синус, косинус, тангенс и котангенс в прямоугольном треугольнике?

Это тема не сложная, главное это запомнить правила. И так начнем:

Прямоугольным треугольником, называется треугольник у которого один из углов прямой (составляет 90 градусов). Две стороны которые прилежат к прямому углу, называются катетами, а сторона лежащая напротив прямого угла, называется гипотенузой.

Синус (sin(a)) — это отношение противолежащего катета к гипотенузе;

Косинус (cos(a)) — это отношение прилежащего катета к гипотенузе;

Тангенс (tg(a)) — это отношение противолежащего катета к прилежащему катету;
Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу;

Котангенс (ctg(a)) — это отношение прилежащего катета к противолежащему.
Другое (равносильное) определение: котангенсом острого угла называется отношение косинуса угла к его синусу;

Пусть дан прямоугольный треугольник ABC с прямым углом C.

Найти sin(a); cos(a); tg(a); ctg(a) Отношение сторон в прямоугольном треугольнике

Найти sin(b); cos(b); tg(b); ctg(b) Отношение сторон в прямоугольном треугольнике

Хочешь готовиться к экзаменам бесплатно? Репетитор онлайн бесплатно. Без шуток. ЗДЕСЬ

tutomath.ru

Одним из разделов математики, с которыми школьники справляются с наибольшими трудностями, является тригонометрия. Неудивительно: для того чтобы свободно овладеть этой областью знаний, требуется наличие пространственного мышления, умение находить синусы, косинусы, тангенсы, котангенсы по формулам, упрощать выражения, уметь применять в вычислениях число пи. Помимо этого, нужно уметь применять тригонометрию при доказательстве теорем, а это требует либо развитой математической памяти, либо умения выводить непростые логические цепочки.

Знакомство с данной наукой следует начать с определения синуса, косинуса и тангенса угла, однако прежде необходимо разобраться, чем вообще занимается тригонометрия.

Исторически главным объектом исследования данного раздела математической науки были прямоугольные треугольники. Наличие угла в 90 градусов дает возможность осуществлять различные операции, позволяющие по двум сторонам и одному углу либо по двум углам и одной стороне определять значения всех параметров рассматриваемой фигуры. В прошлом люди заметили эту закономерность и стали активно ею пользоваться при строительстве зданий, навигации, в астрономии и даже в искусстве.

Первоначально люди рассуждали о взаимоотношении углов и сторон исключительно на примере прямоугольных треугольников. Затем были открыты особые формулы, позволившие расширить границы употребления в повседневной жизни данного раздела математики.

Изучение тригонометрии в школе сегодня начинается с прямоугольных треугольников, после чего полученные знания используются учениками в физике и решении абстрактных тригонометрических уравнений, работа с которыми начинается в старших классах.

Позже, когда наука вышла на следующий уровень развития, формулы с синусом, косинусом, тангенсом, котангенсом стали использоваться в сферической геометрии, где действуют иные правила, а сумма углов в треугольнике всегда больше 180 градусов. Данный раздел не изучается в школе, однако знать о его существовании необходимо как минимум потому, что земная поверхность, да и поверхность любой другой планеты, является выпуклой, а значит, любая разметка поверхности будет в трёхмерном пространстве «дугообразной».

Возьмите глобус и нитку. Приложите нитку к двум любым точкам на глобусе, чтобы она оказалась натянутой. Обратите внимание – она обрела форму дуги. С такими формами и имеет дело сферическая геометрия, применяющаяся в геодезии, астрономии и других теоретических и прикладных областях.

Немного узнав про способы применения тригонометрии, вернемся к базовой тригонометрии, чтобы в дальнейшем разобраться, что такое синус, косинус, тангенс, какие расчёты можно с их помощью выполнять и какие формулы при этом использовать.

Первым делом необходимо уяснить понятия, относящиеся к прямоугольному треугольнику. Во-первых, гипотенуза – это сторона, лежащая напротив угла в 90 градусов. Она является самой длинной. Мы помним, что по теореме Пифагора её численное значение равно корню из суммы квадратов двух других сторон.

Например, если две стороны равны 3 и 4 сантиметрам соответственно, длина гипотенузы составит 5 сантиметров. Кстати, об этом знали ещё древние египтяне около четырех с половиной тысяч лет назад.

Две оставшиеся стороны, которые образуют прямой угол, носят название катетов. Кроме того, надо помнить, что сумма углов в треугольнике в прямоугольной системе координат равняется 180 градусам.

Наконец, твердо понимая геометрическую базу, можно обратиться к определению синуса, косинуса и тангенса угла.

Синусом угла называется отношение противолежащего катета (т. е. стороны, располагающейся напротив нужного угла) к гипотенузе. Косинусом угла называется отношение прилежащего катета к гипотенузе.

Запомните, что ни синус, ни косинус не может быть больше единицы! Почему? Потому что гипотенуза – это по умолчанию самая длинная сторона прямоугольного треугольника. Каким бы длинным ни был катет, он будет короче гипотенузы, а значит, их отношение всегда будет меньше единицы. Таким образом, если у вас в ответе к задаче получился синус или косинус со значением, большим, чем 1, ищите ошибку в расчётах или рассуждениях. Этот ответ однозначно неверен.

Наконец, тангенсом угла называется отношение противолежащей стороны к прилежащей. Тот же самый результат даст деление синуса на косинус. Посмотрите: в соответствии с формулой мы делим длину стороны на гипотенузу, после чего делим на длину второй стороны и умножаем на гипотенузу. Таким образом, мы получаем то же самое соотношение, что и в определении тангенса.

Котангенс, соответственно, представляет собой отношение прилежащей к углу стороны к противолежащей. Тот же результат мы получим, разделив единицу на тангенс.

Итак, мы рассмотрели определения, что такое синус, косинус, тангенс и котангенс, и можем заняться формулами.

В тригонометрии не обойтись без формул – как найти синус, косинус, тангенс, котангенс без них? А ведь именно это требуется при решении задач.

Первая формула, которую необходимо знать, начиная изучать тригонометрию, говорит о том, что сумма квадратов синуса и косинуса угла равна единице. Данная формула является прямым следствием теоремы Пифагора, однако позволяет сэкономить время, если требуется узнать величину угла, а не стороны.

Многие учащиеся не могут запомнить вторую формулу, также очень популярную при решении школьных задач: сумма единицы и квадрата тангенса угла равна единице, деленной на квадрат косинуса угла. Присмотритесь: ведь это то же самое утверждение, что и в первой формуле, только обе стороны тождества были поделены на квадрат косинуса. Выходит, простая математическая операция делает тригонометрическую формулу совершенно неузнаваемой. Помните: зная, что такое синус, косинус, тангенс и котангенс, правила преобразования и несколько базовых формул вы в любой момент сможете сами вывести требуемые более сложные формулы на листе бумаги.

Ещё две формулы, которые требуется выучить, связаны со значениями синуса и косинуса при сумме и разности углов. Они представлены на рисунке ниже. Обратите внимание, что в первом случае оба раза перемножается синус и косинус, а во втором складывается попарное произведение синуса и косинуса.

Также существуют формулы, связанные с аргументами в виде двойного угла. Они полностью выводятся из предыдущих – в качестве тренировки попробуйте получить их самостоятельно, приняв угол альфа равным углу бета.

Наконец, обратите внимание, что формулы двойного угла можно преобразовать так, чтобы понизить степень синуса, косинуса, тангенса альфа.

Двумя основными теоремами в базовой тригонометрии являются теорема синусов и теорема косинусов. С помощью этих теорем вы легко сможете понять, как найти синус, косинус и тангенс, а значит, и площадь фигуры, и величину каждой стороны и т. д.

Теорема синусов утверждает, что в результате деления длины каждой из сторон треугольника на величину противолежащего угла мы получим одинаковое число. Более того, это число будет равно двум радиусам описанной окружности, т. е. окружности, содержащей все точки данного треугольника.

Теорема косинусов обобщает теорему Пифагора, проецируя её на любые треугольники. Оказывается, из суммы квадратов двух сторон вычесть их произведение, умноженное на двойной косинус смежного им угла — полученное значение окажется равно квадрату третьей стороны. Таким образом, теорема Пифагора оказывается частным случаем теоремы косинусов.

Даже зная, что такое синус, косинус и тангенс, легко совершить ошибку из-за рассеянности внимания или ошибки в простейших расчётах. Чтобы избежать таких ошибок, ознакомимся с наиболее популярными из них.

Во-первых, не следует преобразовывать обыкновенные дроби в десятичные до получения окончательного результата – можно и ответ оставить в виде обыкновенной дроби, если в условии не оговорено обратное. Такое преобразование нельзя назвать ошибкой, однако следует помнить, что на каждом этапе задачи могут появиться новые корни, которые по задумке автора должны сократиться. В этом случае вы напрасно потратите время на излишние математические операции. Особенно это актуально для таких значений, как корень из трёх или из двух, ведь они встречаются в задачах на каждом шагу. То же касается округлений «некрасивых» чисел.

Далее, обратите внимание, что к любому треугольнику применима теорема косинусов, но не теорема Пифагора! Если вы по ошибке забудете вычесть удвоенное произведение сторон, умноженное на косинус угла между ними, вы не только получите совершенно неверный результат, но и продемонстрируете полное непонимание предмета. Это хуже, чем ошибка по невнимательности.

В-третьих, не путайте значения для углов в 30 и 60 градусов для синусов, косинусов, тангенсов, котангенсов. Запомните эти значения, ведь синус 30 градусов равен косинусу 60, и наоборот. Их легко перепутать, вследствие чего вы неизбежно получите ошибочный результат.

Многие ученики не спешат приступать к изучению тригонометрии, поскольку не понимают её прикладного смысла. Что такое синус, косинус, тангенс для инженера или астронома? Это понятия, благодаря которым можно вычислить расстояние до далёких звёзд, предсказать падение метеорита, отправить исследовательский зонд на другую планету. Без них нельзя построить здание, спроектировать автомобиль, рассчитать нагрузку на поверхность или траекторию движения предмета. И это только самые очевидные примеры! Ведь тригонометрия в том или ином виде используется повсюду, начиная от музыки и заканчивая медициной.

Итак, вы знаете, что такое синус, косинус, тангенс. Вы можете использовать их в расчётах и успешно решать школьные задачи.

Вся суть тригонометрии сводится к тому, что по известным параметрам треугольника нужно вычислить неизвестные. Всего этих параметров шесть: длины трёх сторон и величины трёх углов. Всё различие в задачах заключается в том, что даются неодинаковые входные данные.

Как найти синус, косинус, тангенс исходя из известных длин катетов или гипотенузы, вы теперь знаете. Поскольку эти термины обозначают не что иное, как отношение, а отношение – это дробь, главной целью тригонометрической задачи становится нахождение корней обычного уравнения либо же системы уравнений. И здесь вам поможет обычная школьная математика.

fb.ru

Евклид родился около 330 г. до н.э., предположительно, в г. Александрия. Некоторые арабские авторы полагают, что он происходил из богатой семьи из Нократа. Есть версия, что Евклид мог родиться в Тире, а всю свою дальнейшую жизнь провести в Дамаске. Согласно некоторым документам, Евклид учился в древней школе Платона в Афинах, что было под силу только состоятельным людям. Уже после этого он переедет в г. Александрия в Египте, где и положит начало разделу математики, ныне известному как «геометрия».

Жизнь Евклида Александрийского часто путают с жизнью Евклида из Мегуро, что делает сложным обнаружение любых надёжных источников жизнеописания математика. Достоверно известно только то, что именно он привлёк внимание общественности к математике и вывел эту науку на совершенно новый уровень, совершив революционные открытия в этой области и доказав множество теорем. В те времена Александрия была не только крупнейшим городом в западной части мира, но и центром крупной, процветающей отрасли производства папируса. Именно в этом городе Евклид разработал, записал и представил миру свои труды по математике и геометрии.

Евклида обоснованно считают «отцом геометрии». Именно он заложил основы этой области знаний и возвёл её на должный уровень, открыв обществу законы одного самых сложных разделов математики в то время. После переезда в Александрию, Евклид, как и многие учёные того времени, благоразумно проводит большую часть времени в Александрийской библиотеке. Этот музей, посвящённый литературе, искусству и наукам, был основан ещё Птолемеем. Здесь Евклид начинает объединять геометрические принципы, арифметические теории и иррациональные числа в единую науку геометрию. Он продолжает доказывать свои теоремы и сводит их в колоссальный труд «Начала». За всё время своей малоисследованной научной деятельности, учёный закончил 13 изданий «Начал», охватывающих широкий спектр вопросов, начиная с аксиом и утверждений и заканчивая стереометрией и теорией алгоритмов. Наряду с выдвижением различных теорий, он начинает разрабатывать методику доказательства и логическое обоснование этих идей, которые докажут предложенные Евклидом утверждения.

Его труд содержит более 467 утверждений касательно планиметрии и стереометрии, а также гипотез и тезисов, выдвигающих и доказывающих его теории относительно геометрических представлений. Доподлинно известно, что в качестве одного из примеров в своих «Началах» Евклид использовал теорему Пифагора, устанавливающую соотношение между сторонами прямоугольного треугольника. Евклид утверждал, что «теорема верна для всех случаев прямоугольных треугольников». Известно, что за время существования «Начал», вплоть до XX века, было продано больше экземпляров этой книги, чем Библии. «Начала», изданные и переизданные бесчисленное количество раз, в своей работе использовали разные математики и авторы научных трудов. Евклидова геометрия не знала границ, и учёный продолжал доказывать всё новые теоремы в совершенно разных областях, как, например, в области «простых чисел», а также в области основ арифметических знаний. Цепочкой логических рассуждений Евклид стремился открыть тайные знания человечеству. Система, которую учёный продолжал разрабатывать в своих «Началах», станет единственной геометрией, которую будет знать мир вплоть до XIX века. Однако современные математики открыли новые теоремы и гипотезы геометрии, и разделили предмет на «евклидову геометрию» и «неевклидову геометрию».

Сам учёный называл это «обобщённым подходом», основанным не на методе проб и ошибок, а на представлении неоспоримых фактов теорий. Во времена, когда доступ к знаниям был ограничен, Евклид принимался за изучение вопросов совершенно разных областей, в том числе и «арифметики и чисел».

Евклид говорил, что аксиомы – это утверждения, не требующие доказательств, но при этом он понимал, что слепое принятие на веру этих утверждений не может использоваться в построении математических теорий и формул. Он осознавал, что даже аксиомы должны быть подкреплены неоспоримыми доказательствами. А потому учёный начал приводить логические заключения, подтверждавшие его геометрические аксиомы и теоремы. Для лучшего понимания этих аксиом, он разделил их на две группы, которые назвал «постулатами». Первая группа известна как «общие понятия», состоящие из признанных научных утверждений. Вторая группа постулатов является синонимом самой геометрии. Первая группа включает такие понятия, как «целое больше суммы частей» и «если две величины порознь равны одной и той же третьей, то они равны между собой». Вот лишь два из пяти постулатов, записанных Евклидом. Пять постулатов второй группы относятся непосредственно к геометрии, утверждая, что «все прямые углы равны между собой», и что «от всякой точки до всякой точки можно провести прямую».

Научная деятельность математика Евклида процветала, и в начале 1570-х г.г. его «Начала» были переведены с греческого языка на арабский, а затем и на английский язык Джоном Ди. С момента своего написания, «Начала» были перепечатаны 1 000 раз и, в конце концов, заняли почётное место в учебных классах XX столетия. Известно множество случаев, когда математики пытались оспорить и опровергнуть геометрические и математические теории Евклида, но все попытки неизменно оканчивались провалом. Итальянский математик Джироламо Саккери стремился усовершенствовать труды Евклида, но оставил свои попытки, не в силах отыскать в них ни малейшего изъяна. И лишь спустя столетие новая группа математиков сможет представить новаторские теории в области геометрии.

Не переставая трудиться над изменением теории математики, Евклид успел написать ряд работ на другую тематику, которые используются и на которые ссылаются по сей день. Эти труды были чистыми предположениями, основанными на неопровержимых доказательствах, красной нитью проходящими через все «Начала». Учёный продолжил изучение и открыл новую область оптики – катоптрику, в значительной мере утверждавшую математическую функцию зеркал. Его работы в области оптики, математических соотношений, систематизаций данных и изучения конических сечений затерялись в глубине веков. Известно, что Евклид успешно окончил восемь изданий, или книг, по теоремам, касающимся конических сечений, но ни одна из них не дошла до наших дней. Он также сформулировал гипотезы и предположения, основанные на законах механики и траектории движения тел. По-видимому, все эти работы были взаимосвязаны, и высказанные в них теории произрастали из единого корня – его знаменитых «Начал». Он также разработал ряд евклидовых «построений» – основных инструментов, необходимых для выполнения геометрических построений.

Есть свидетельства, что Евклид открыл при Александрийской библиотеке частную школу, чтобы иметь возможность обучать математике таких же энтузиастов, как он сам. Также бытует мнение, что в поздний период своей жизни он продолжал помогать своим ученикам в разработке собственных теорий и написании трудов. У нас нет даже чёткого представления о внешности учёного, а все скульптуры и портреты Евклида, которые мы видим сегодня, являются лишь плодом воображения их творцов.

Год и причины смерти Евклида остаются для человечества тайной. В литературе встречаются туманные намёки на то, что он мог умереть около 260 г. до н.э. Наследие, оставленное учёным после себя, куда более значимо, чем впечатление, которое он производил при жизни. Его книги и труды продавались по всему миру до самого XIX века. Наследие Евклида пережило учёного на целых 200 веков, и служило источником вдохновения для таких личностей, как, например, Авраам Линкольн. По слухам, Линкольн всегда суеверно носил при себе «Начала», и во всех своих речах цитировал работы Евклида. Даже после смерти учёного, математики разных стран продолжали доказывать теоремы и издавать труды под его именем. В общем и целом, в те времена, когда знания были закрыты для широких масс, Евклид логическим и научным путём создал формат математики древности, который в наши дни известен миру под названием «евклидовой геометрии».

obrazovaka.ru

Еще по теме:

  • Выдает полномочия Генеральный директор на время своего отсутствия издал приказ, согласно которому его обязанности исполняет заместитель генерального директора. На этого зама есть доверенности, но без права передоверия. Может ли этот зам, исполняя обязанности ген директора по приказу, выдать доверенность от имени ооо сотруднику для […]
  • Муниципальный участок оформить Переоформление земельного участка, с полной передачей прав на него другому лицу, может осуществляться только законным собственником данной территории. Для регистрации этой юридической сделки, на руках у собственника должны иметься необходимые устанавливающие право документы, а также все бумаги, относящиеся к данному […]
  • Прения в суде по гражданскому делу Если по уголовному делу заявлен гражданский иск, то в процессе расследования и рассмотрения дела по существу появляется новый участник со стороны защиты — гражданский ответчик. В качестве гражданского ответчика в соответствии со ст. 54 УПК может быть привлечено физическое или юридическое лицо, которое в соответствии […]
  • Нет страховки и техосмотра что будет 2018 год Наш онлайн сервис на протяжении многих лет помогает владельцам автомобилей с оформлением и получением диагностических карт техосмотра онлайн для ОСАГО. Без необходимости прохождения технического осмотра с личным присутствием (без заезда). Вы можете оформить и получить официальную карту техосмотра в течении 10-30 […]
  • Можно вернуть товар после 14 дней Приобретение украшений — событие само по себе радостное и приятное. Но, к сожалению, оно может обернуться хлопотами и проблемами, если принимается решение сдать покупку обратно в магазин. Так можно ли вернуть в магазин ювелирные изделия? Согласно действующему законодательству, «ювелирные изделия возврату и обмену не […]
  • Сколько детское пособие в башкирии Отвечает начальник отдела Управления организации обеспечения страховых выплат ФСС РФ Ирина Савченко: - Право на социальное пособие на погребение имеют родственники всех умерших - это гарантирует закон «О погребении и похоронном деле». Другое дело - куда обращаться за пособием. Если скончался работающий человек или […]
  • Закон об отмене пенсии в украине Президент подписал закон об отмене индексации пенсий работающим пенсионерам. С первого января он вступит в силу. Теперь это "решение окончательное " и обжалованию не подлежит. Величина индексации пенсий (с 1 февраля 2016 г.) для неработающих пенсионеров - 4%. (Размер пенсии после индексации можно определить на […]
  • Налог с автомобиля до 100 Мы ежедневно пользуемся бытовыми приборами и автомобилями. Многочисленные компании и предприятия для выполнения профильных задач эксплуатируют различный транспорт, спецтехнику и оборудование. Раньше или позже все это выходит из строя, устаревает, превращается в ненужный хлам, загромождающий полезное пространство. И […]